

International Telecommunication Union

Higher Assurance Authentication for the Enablement of Federated On-Line Trust

Abbie Barbir, PhD
ITU-T Study Group 17
Rapporteur, Identity management
Abbie.Barbir@ties.itu.int

draft

S c o p e

- O verview of International Telecom m unication Union(ITU-T) Study Group 17 (SG 17)
- o Overview of Entity Authentication Assurance
- o Enhancing Cybersecurity through Open Trust Fram eworks
- o Som e Legal concerns
- o Conclusions

IT U -T G e n e v a

IT U - T O verview

History

- o Established 17 May 1865
- o C C IF and C C IT form ed in 1924 and 1925, merged into C C IT T in 1956, became IT U T in 1992
- o Decisions by consensus (voting almost never occurs)
- o Participation through national Government channels
- o Telecom does not mean that focus is only on Telecom

M ission and Legal Status

o M ission

study technical, operating and tariff
questions and issue non-binding
international standards to ensure
com patibility of standards on world wide

o Legal Status

- U N specialized agency
- Legal base: Constitution and Convention;
 have treaty status among the signatory
 states
- 192 UN Member States are signatory members
- Approx. 700 Sector M em bers (operators, m anufacturers, etc.)

IT U - T Structure

Study groups (2009-2012)

S G 2	Operational aspects of service provision and telecommunications management
S G 3	Tariff & accounting principles including related telecommunication economic & policy issues
S G 5	Environment and climate change
S G 9	Television and sound transmission and integrated broadband cable networks
S G 1 1	Signalling requirements, protocols and test specifications
S G 1 2	Performance, QoS and QoE
S G 1 3	Future networks including mobile and NGN
S G 1 5	Optical transport networks and access network in frastructures
S G 1 6	Multimedia coding, systems and applications
	Lead study group on telecom security,
S G 1 7	identity management (IdM) and languages

7

Network and information security

SG 17 structure

Security Q 1 project Q 2 Architecture **Q 3** IS M Q 4 C y b e r s e c u r i t y Countering Q 5 s p a m W

8

Q 10/17 collaboration on identity anagem ent

kantara

AND DEVELOPMENT

<u>ITU-T Joint coordination activity in IdM JCA-IdM</u>

Id M Drivers

- o For Financials
- o Meeting customer needs
 - Safe, secure
 - Sim ple, seam less, convenient access
 - A ctive customers

The threat: Cyber crim e

C y b e r c r i m e losses a r e g r o w i n g

Identity crim e affects all

sectors

Identity Management Drivers

Q 10 focus is Towards

Strong Identity, Portable Reputation and Enhanced Trust

Need for Better Identity Assurance

Technology
Standards and
Guidelines

Business and
Privacy Guidelines

An Ecosystem of
Interoperable Products

& Services

Identity Assurance
Framework & Assessors

Assurance

Q 1 0 / 1 7

Entity Authentication Assurance

- o Joint work with ISO JTC1/SC
 27/W G 5 and ITU-T SG 17/Q 10
- o Standardizes four Levels of Assurance (LoAs)
 - to promote trust,
 - im prove interoperability, and
 - facilitate identity federation across organizations and borders

Why dothe work?

- o Provides a consistent basis for trust
- o Promotes identity federation
- o Enables credential re-use in different contexts
- o Promotes efficiency and reduces costs
- o Enables cross-organization and cross-border services
- o Provides fram ework for further standardization
- o Establish foundation for liability and other legal aspects
- o Brings to gether existing work in this area and will not "re-invent the wheel":
 - · Kantara Initiative, IT U-T, NIST standards efforts
 - New Zealand, Australian, U.S., European, and Canadian e-government efforts
 - EU research efforts (STORK, IDABC, etc.)

Case Study: The Problem

- o Most U.S. government agencies want to offer more online applications to citizens:
 - Research, grant proposals, taxes, benefits, data sharing
- o Authentication is a large barrier to deployment:
 - · There is no universal citizen credential
 - A p p lication specific credentials are difficult and expensive:
 - Identity proofing
 - Forgotten passwords from infrequent usage
 - · Help desks and other maintenance overhead
 - Multiple collections of personally identifiable information (PII)

Possible Solutions

- O Government agencies can act as the Relying Party (RP) rather than the Identity Provider (IdP) and accept credentials issued by "trusted" external organizations
- Standard is used to develop Trust Fram ework Adoption Process, that defines IdSP requirements for the LoAs
 - Started an IdP certification program based on the Trust Fram ew ork
- o N I H pilot studies to use open standards credentials from several certified IdPs

X .e a a S c o p e

- o ISO/IEC 29115 | ITU-T X.eaa provides a fram ework for managing entity authentication assurance in a given context. In particular, it:
 - specifies four levels of entity authentication assurance;
 - specifies criteria and guidelines for each of the four levels of entity authentication assurance;
 - provides guidance concerning controls that should be used to mitigate authentication threats;
 - provides guidance for mapping the four levels of assurance to other authentication assurance schemes;
 - provides guidance for exchanging the results of authentication that are based on the four levels of assurance.

Structure and Contents

- o Four Levels of Assurance
- o Entity Authentication Assurance Framework
 - Human and non-human
- o Management and Organizational Considerations
- o Threats Based on Fram ework Components
- o Required Controls for Each LoA
- o Privacy and Protection of PII
- o Operational Service Assurance Criteria

4 Levels of Assurance

Levei	Description
1 - Low	Little or no confidence in the asserted identity
2 - Medium	Some confidence in the asserted identity
3 - High	High confidence in the asserted identity
4 – Very High	Very high confidence in the asserted identity

W hat consumers are willing to give-up

- o Move from anonymous to identity enabled
- o Internet transactions are still anonymous or low trust
- Value transactions are widely identity based
- O Enable Identity while protecting privacy (PII)
 - Isolation of Issuer and target Identity
 - Enable the right to forget
 - Identity dashboard for user to keep control identity
- o Enable audit, accountability and policy

Som e Implications

- o Simplify the Task of Authentication
 - who are you (context based)
- o Attributes
 - w h a t a r e y o u
 - This is where the beef is
- o Proof of validity
 - ID Source and /or Reputation
- o Towards Open Identity Trust Frameworks
- o Need better understanding of |Legal Issues and liabilities
- o How about consumer protection?

C urrent B a sic "Trust Triangle"

- O User has direct trust relationship with IDSP and RP
- o How can the IDSP and RP trust each other?

W here trust Fram eworks Fit

Internet Id en tity

Layer

U sability (U ser Experience Ceremonies)

Policy Interoperability (Trust Frameworks)

Hardware Devices (Security Capabilities)

pen Identity Framework Model

How Can UNCITRAL Help

- o Identify possible legal issues and determ in e how they relate locally and internationally
- o W hat are the liabilities of IdSP and RPs
- o W hat are the legal requirements for trust among the participants
- O How can this be enforced across international boundaries

C on clusions

- Strong Identity and higher assurance authentication is key for enabling online trust and enhancing Cybersecurity
 - · Interoperable federated fram eworks
 - Multiple methods
 - End-to-end identification
 - · Higher-level authentication
- Need for better National and International understanding legal and assume liabilities and polices

A cknowledgements

- o Some slides are based on presentation on X.eaa by the editor ISO editor Erika McCallister and the ITU-T Editor Richard Brackney
- o Some Slides are based on presentation on OIX by
 Don Thibeaux